您好,欢迎访问这里是您的网站名称官网!
10年专注环保设备研发制造 环保设备系统设计\制作\安装一条龙服务
全国咨询热线:131-958-2773
当前位置: 首页 > 新闻中心 > 行业资讯

废气处理技术_培训课件ppt

作者:小编 时间:2023-12-19 16:42:38 点击:

  Rhodococcus rhodochrous CF 222 五、废气生物处理的基本条件 主要有水分,养分、温度、氧气(有氧或无氧)以及酸碱度等。 1.水 分 微生物生命活动的必要成分; 吸收废气的溶剂。 采用土壤或堆肥等固态处理系统时,适宜的水分含量可保证氧与水分的供给。 50%~70%为适宜的含水量。 通常预处理需要加湿,防止滤料变干。 2.养 分 废气可为微生物提供一定的养分,VOCs可以提供碳源和能源,但是需要适当补足其它养分。 不同的处理工艺对养分控制有差异,例如生物滴滤池补充营养盐十分重要,但是堆肥生物滤池补给营养盐的次数可以减少,一年补给二次即可。 3.温 度 废气生物处理多用中温条件(25~35℃),少用高温。 土壤或堆肥处理废气时通常采用自然温度,如果微生物分解基质放热造成温度过高则需采取降温措施。 4.氧气 废气处理多用异养型好氧微生物; 氧的供给量与供给方式对处理效率的影响很大,微生物数量、基质浓度和温度等因素也会影响供氧。 少数厌氧条件,例如着色菌处理硫化氢,则需控制无氧条件,以氨气取代反应系统的氧气。 5、酸碱度 以中性或微碱性为宜。 废气生物处理中的细菌多数适应于中性至微碱性环境,只有少数种类对酸碱度要求比较特殊, 例如氧化硫硫杆菌最适pH为2.6~2.8,最低为pH1.0,最高为pH4.0~6.0。 2.6 恶臭气体的治理 恶臭物质种类繁多,分布广,影响范围大,它们多数来自于以石油为原料的化工厂、垃圾处理厂、污水处理厂、皮革厂、纸浆厂等工业企业,特别是石油中含有微量且多种结构形式的硫、氧、氮等的烃类化合物,在储存、运输和加热、分解、合成等工艺过程中产生出臭气逸散到大气中,造成环境的恶臭污染。 迄今凭人的嗅觉即能感觉到的恶臭物质已达4000多种,其中对健康危害较大的有硫醇类、硫醚类、氨(胺)类、酚类、醛类等几十种。 恶臭物质的控制方法 密封法 用固体、无臭气体或液体隔断恶臭物质扩散来源,使恶臭物质不能进入或只允许不可避免的极少量进入空气; 稀释法 用大量无臭气体将含恶臭物质的废气稀释,从而降低恶臭物质浓度; 掩蔽法 在一定范围内施放其他芳香物质以遮盖恶臭物质的臭味; 净化法 建立脱臭装置,在恶臭物质排放前,通过物理的、化学的或生物的方法将恶臭物质除去。 恶臭的治理方法 吸收法 利用恶臭气体的物理或化学性质,使用水或化学吸收液对恶臭气体进行物理或化学吸收而脱除恶臭的方法。吸收装置如喷淋塔、填料塔、各类洗涤器、鼓泡塔等。 选择吸收方式时,应尽可能选择化学吸收,一方面可以提高脱臭效果,同时也可节省大量用水。恶臭气体浓度较高时,一级吸收往往难以满足脱臭要求,此时可采用二级、三级或多级吸收。对复合性恶臭也可使用几种不同的吸收液分别吸收。 吸附法 吸附法是处理低浓度恶臭气体的很重要的方法之一 虽然可供使用的吸附剂很多,如活性炭(包括活性炭纤维)、两性离子交换树脂、硅胶、磺化煤、氢氧化铁等等,但大多数吸附剂对空气中的水分吸附能力大于对恶臭物质的吸附能力; 活性炭对恶臭气体有较大的平衡吸附量,对多种恶臭气体有较强的吸附能力。 燃烧法 直接燃烧法脱臭 优点是脱臭效率高; 缺点是设备和运转费用高,温度控制复杂。 催化燃烧法脱臭 与直接燃烧法相比,催化燃烧法在燃烧过程中需要使用催化剂,以利于能在较低的温度下完全燃烧,达到脱除恶臭的目的。该方法可节省大量燃料,适用于低温恶臭气体的处理。 生物法脱臭 目前在脱臭方面发展起来的生物处理法是一种很有前途的方法。可以认为生物处理废气也是一种催化反应,只不过它使用的是生物催化剂,利用生物酶的催化作用,使有机废气中的有害成分分解。 生物处理净化有机物特别是臭味,设备简单,能耗低,不消耗有用原料,安全可靠,无二次污染。 目前在用生物处理醇类、酚类、硫醇类、脂肪酸类、醛类、胺类等方面已有了比较成熟的方法。 一些微生物制剂也大量出现。因此,生物处理有机污染物是很有发展前途的. 2.7 含氟废气的治理 含氟废气主要是指含氟化氢(HF)和四氟化硅(SiF4)的废气,它主要来源于工业生产过程,如电解铝、炼钢、磷肥、氟塑料生产、化铁炉,另外还有玻璃、陶瓷、砖瓦、搪瓷等行业。其中以电解铝和磷肥工业排放量最大。 据测算,每生产一吨铝,要排放16~24公斤的氟;生产一吨黄磷排放30公斤氟,生产一吨磷肥排放5~25公斤氟。煤中也含有氟,每公斤约40~300毫克,高的达1400毫克,煤燃烧时,约78%~100%的氟排放出来。 含氟废气的吸收净化 水吸收法 :用水吸收含氟废气主要是基于氟化氢和四氟化硅极易溶于水的特性。氟化氢溶于水生成氢氟酸,四氟化硅溶于水生成氟硅酸和硅胶。 碱吸收法:碱吸收法的机理与上述水吸收法基本相同,只是把水改为碱水,一般是用Na2CO3水溶液吸收含氟化氢废气制取冰晶石;用碱水吸收氟化氢或四氟化硅,最后都得到氟化物(NaF或NH4F),再定量地加入偏铝酸钠(NaF溶液中)或硫酸铝和Na2SO4(NH4F溶液中),生成冰晶石。 含氟废气的吸附法净化 用氧化铝粉作吸附剂吸附铝厂烟气中的氟化氢是20世纪60年代电解铝厂含氟烟气治理技术上的一个重要突破。它不仅可以用来净化预焙窑的烟气,而且还可以处理净化电解槽出来的含氟废气,目前来自预熔窑的烟气主要是采用吸附法,而来自电解槽的烟气还可采用吸收法。 吸附法净化含氟化氢废气有很高的净化效率,一般可达到98%以上。吸附完氟化氢的氧化铝不需再生,可直接送到电解槽作为电解铝的原料。工艺流程简单,不存在水污染和系统腐蚀问题,因此,与湿法相比,其投资和运行费用都比较低,可用于各种气候条件。 2.8 含汞废气的治理 汞分为无机汞和有机汞两类。无机汞的毒性较小,微量无机汞摄入人体后基本上能等量的由尿、汗等排出体外。有机汞则不然。特别是甲基汞和乙基汞的毒性更大,而且可以在体内慢慢积累。 空气中的汞包括汞蒸气和汞化合物的粉尘。主要来源是人类活动造成的,包括汞矿开采与冶炼,金、银、铅共生矿的开采、冶炼,一些汞制品及汞化合物生产厂,使用汞的氯碱厂、有机化工厂,馏金作业点以及矿物燃料燃烧、煤燃烧、垃圾焚烧炉等均会有汞的污染物排放。 含汞废气的治理方法 吸收法治理含汞废气 高锰酸钾溶液吸收法 硫酸-软锰矿液体吸收法 吸附法治理含汞废气 气相升华反应法 :碘 冷凝法 2.9 化工废气治理技术的选择 选择处理方法时从技术、经济和排放标准三个方面考虑;从废气特性(流量、温度和湿度)、污染物种类和浓度等方面选择合适的方法。 (1)废气流量 (2)污染物浓度 (3)废气温度、湿度 有机废气 针对性处理方案 1.较高浓度,成分单一或类似回收能产生经济效益。 2. 成分复杂无回收价值。 废气中含有污染物种类很多,其物理和化学性质非常复杂,毒性也不尽相同。燃料燃烧排出的废气中含有二氧化硫、氮氧化物(NOx)、碳氢化合物等;因工业生产所用原料和工艺不同,而排放各种不同的有害气体和固体废物,含有各种组分如重金属、盐类、放射性物质;汽车排放的尾气含有铅、苯和酚等碳氢化合物。废气污染大气环境是世界最普遍最严重的环境问题之一。中国《环境保护法》已对各类厂矿的废气排放标准,作了明确的规定。 工业除尘通常指:颗粒污染物废气的治理 中国 废气的处理 废气处理是环境污染控制的一个重要方面。 废气处理方法: 理化法:目前主要采用的方法,如燃烧、 吸附、吸收和还原等。工艺或设备较复杂,运行费用较高;用于处理某些恶臭废气时,效果不甚理想。 生物法:具有处理效率较高、适应性较广、工艺较简单以及费用较省等优点。 第一节 废气的生物反应器处理 废气的微生物处理于1957年在美国获得专利,但到1970年代才开始引起重视,直到1980年代才在德国、日本、荷兰等国家有相当数量工业规模的各类生物净化装置投入运行。 废气生物反应器处理对许多一般性的空气污染物的去除率可达到90%以上。 一、废气生物处理的特点 废气或尾气(waste gas,off-gas)在生物反应器内进行。 挥发性有机化合物 (volatile organic compounds,VOCs)以及其它有毒或有臭味的气体,如NH3和H2S等。 化工、制药、电镀、喷漆、印刷等行业产生的有害污染物(hazardous air pollutants,HAPs)以及废水处理厂、堆肥厂、垃圾填埋厂产生恶臭(odor)等。 去除效率高 一般的空气污染物去除效率超过90%。 投资少,运行费用低 不需要投入额外的化学品; 化学法则需加催化剂和氧化剂等,如次氯酸盐、过氧化氢、二氧化氯等。 污染少 生物处理的产物是生物量,很容易处理。 耗能低 生物反应在常温常压下进行,能量来自微生物利用VOCs成分本身产生的能量。 生物处理法消耗的动力只是污染气体进入 处理系统时所消耗的能量(正压送风或负压引风)。 水溶性强 兼具有蒸汽压低、亨利定律常数低的特点,向介质表面微生物膜扩散速率高; 主要有无机物如H2S和NH3等、醇类、醛类、酮类以及简单芳烃(如BTEX)等有机物。 适宜处理的污染气体应具有的特点: 易降解 分子被吸附在生物膜上必需被降解,否则将导致污染物浓度增高,毒害生物膜或影响传质,降低生物滤器效率,或使处理完全失败。 二、废气生物处理的基本形式 根据介质性质不同,分为: 生物洗涤(bioscrubbing) 生物洗涤器(bioscrubber)内是液态介质。 生物滤过(biofiltration) 生物滤过采用是固态介质 生物滤池(biofilters) 生物滴滤池(biotrickling filters) 生物法净化有机废气 生物法净化有机废气是近年来发展起来的有机废气净化技术,已在欧洲得到了规模化的应用。 生物法净化有机废气主要是利用微生物对有机废气的降解净化有机废气的,对有机废气的去除率可达90%以上。 与常规处理方法相比,生物法具有设备简单、运行费用低、较少造成二次污染等特点,同时生物法大都是在常温下运行,因此安全可靠。尤其是在处理低浓度、生物降解性好的有机废气时,更显出它的优越性。但生物法仅适用于低浓度有机废气的治理 1.生物滤池 生物滤池内的固态介质是一些天然材料,常用的固体颗粒有土壤和堆肥,这些材料为微生物的附着和生长提供表面,微生物可以吸收废气中的污染物将其转化为无害物质。 生物过滤塔 有机废气由塔顶进入过滤塔,在流动过程中与已接种挂膜的生物滤料接触而被净化,净化后的气体由塔底排出。定期在塔顶喷淋营养液,为滤料提供养分、水分并调整pH值。 微生物滤池适用于处理肉类加工厂、动物饲养场、污水处理厂和堆肥厂等处产生的废气。 这类废气的主要特点是浓度不高,但带有强烈的臭味。 滤料的选择 堆肥 原料常用污水处理厂污泥、有机垃圾和畜粪以及植物凋落物。 须筛选,滤层要均匀、疏松,空隙率40%,滤料须保持湿润,滤层含水量不低于40%,但不能有积水。滤层保持适当的温度。 土壤 腐殖土为好,其它土质需要改良,有效厚度不应小于50cm, 土壤水分40%~70%, 草炭 其通气性能良好,适于微生物生长,除臭效果比用土壤好。 2.生物滴滤池 生物滴滤池主要由箱体、生物活性床层、喷水器等组成。 废气经过预处理室去除颗粒物和增湿后进入滤床底部。 滤料使用人工材料,如陶瓷、塑料或金属等,使用颗粒状或有空隙的材料,床层厚度一般在0.5~1.0m,依需要而定。 生物滴滤塔 运行时有机气体从塔底进入,在流动过程中与已接种的挂膜的生物滤料接触而被净化,净化后的气体由塔顶排出。滴滤塔集废气的吸收与液相再生于一体,塔内增设了可附着微生物的填料,为微生物的生长、有机物的降解提供了条件。启动初期,在循环液中接种了经被处理有机物驯化的微生物菌种,从塔顶喷淋而下,与进入滤塔的有机废气逆向流动,微生物利用溶解于液相中的有机物质,进行代谢繁殖,并附着于填料表面,形成生物膜,完成生物挂膜过程。气相主体的有机物和氧气经过传输进入微生物膜,被微生物利用,代谢产物CO2等再经过扩散作用进入气相主体后外排。 优点: 滤料重量轻、空隙大、表面积大、废气和介质接触时间短(几秒钟),处理效率高,同时滤料不需更换。 处理的浓度100mg/m3~5g/m3,流量5~50000m3/h。 3.生物洗涤 生物洗涤装置一般由洗涤器和生物反应器两部分组成,吸收器和生物反应器分开设置。 吸收主要是物理溶解过程,采用的吸收设备有喷淋塔、筛板塔、鼓泡塔等,吸收过程进行很快,水在吸收设备中的停留时间仅约几秒钟; 生物洗涤塔 洗涤塔由吸收和生物降解两部分组成。含有经有机物驯化的微生物的循环液,由塔顶喷入,与从塔的下部上升的有机废气逆流接触,废气中的有机物和氧气转入液相,进入活性污泥池,有机物在活性污泥池中被微生物氧化分解。该法适用于气相传质速率大于生化反应速率的有机物的降解。 生物反应的净化过程较慢,吸收了挥发性气体的废水在反应器中一般需要停留几分钟至十几小时。 生物反应器中可进行好氧处理,活性污泥法和生物膜法。 生物洗涤装置 循环废水的利用 可以直接进入吸收器重复使用; 经过泥水分离后再重复使用。 吸收液组成: 微生物、营养物和水; 适合处理水溶性强的气态污染物,如醇类、酯类、醛类和酮类等。 污水处理厂剩余活性污泥配制混合液作为吸收剂可用于处理复合型臭气,特别能脱除很难治理的焦臭。 德国开发一套二级洗涤装置,臭气浓度由1.1?10-3降低至5?10-5,并且抗冲击负荷。 三、生物法处理废气的机理 生物反应器处理废气一般经历以下三个阶段: 溶解过程 废气与水或固相表面的水膜接触,污染物溶于水中成为液相中的分子或离子,这一过程是物理过程,符合亨利定律。 吸着过程 溶于水中的污染物被微生物吸附、吸收,污染物从水中转入微生物体内。作为吸收剂的水被再生复原,继而再用以溶解新的废气成分。 生物降解过程 进入微生物细胞的污染物作为微生物生命活动的能源或养分被分解和利用,从而使污染物得以去除。 烃类和其它有机物成分被氧化分解为CO2和H2O,含硫还原性成分被氧化为S、SO42-,含氮成分被氧化分解成NH3,NO2-和NO3-等。 污染物转移的三种可能情况 (1)气流→吸附在有机介质上→在水相解析膨解→生物降解 (2)气流→在生物膜上直接吸附→生物降解 (3)气流→在水相中溶解→生物降解 四、处理废气的微生物 多为混合微生物,因为: ①含有多种成分的混合废气,需要多种微生物分别降解; ②有的成分需要几种微生物的相继作用才能分解转化为无害物质, 氨先经硝化细菌再经反硝化作用细菌才能成为分子态氮; 四、处理废气的微生物 ③一些难降解的成分要由几种微生物联合作用才能被完全降解; 卤代有机化合物先经厌氧微生物还原脱卤,再被好氧微生物彻底分解; ④工艺需要,尽管废气成分能够被单一微生物分解,但还需利用其它微生物, 在硫化氢氧化中,为了使自养型脱氮硫杆菌(Thiobacillus denitrificans)凝絮持留于反应器内,需与活性污泥中的异养型微生物—起共培养。 紫红红球菌(Rhodococcus rhodochrous) 定义 使废气与大表面、多孔性固体物质相接触,将废气中的有害组分吸附在固体表面上,使其与气体混合物分离,达到净化目的。 吸附法治理气态污染物包括吸附及吸附剂再生的全过程。 特点 净化效率高,特别是对低浓度气体具有很强的净化能力。吸附法特别适用于排放标准要求严格或有害物浓度低,用其他方法达不到净化要求的气体净化。因此,常作为深度净化手段或联合应用几种净化方法时的最终控制手段。由于一般吸附剂的吸附容量有限,对高浓度废气的净化,不宜采用吸附法。 2.3.2 吸附法 定义: 利用催化剂的催化作用,使废气中的有害组分发生化学反应并转化为无害物或易于去除物质的一种方法。 特点: 净化效率较高,净化效率受废气中污染物浓度影响较小,而且在治理过程中,无需将污染物与主气流分离,可直接将主气流中的有害物转化为无害物,避免了二次污染。 但是价格较贵,操作要求较高,废气中有害物质很难作为有用物质进行回收。 2.3.3 催化转化法 定义: 对含有可燃有害组分的混合气体进行氧化燃烧或高温分解,从而使这些有害组分转化为无害物质的方法。 分类: (1)直接燃烧:把废气中的可燃有害组分当作燃料直接烧掉,只适合用于净化含可燃组分浓度高或有害组分燃烧时热值较高的废气。(1100℃) (2)热力燃烧:利用辅助燃料燃烧放出的热量将混合气体加热到要求的温度,使可燃的有害物质进行高温分解变为无害物质。(760~820℃) (3)催化燃烧:在催化剂的作用下,使有害物质在较低温度下燃烧。(200~400℃) 特点: 燃烧法工艺比较简单,操作方便,可回收燃烧后的热量;但不能回收有用物质,并容易造成二次污染。 2.3.4 燃烧法 定义: 采用降低废气温度或提高废气压力的方法,使一些易于凝结的有害气体或蒸汽态的污染物冷凝成液体并从废气中分离出来的方法。 特点: 设备简单,操作方便,并可回收到纯度较高的产物。只适用于处理高浓度的有机废气,常用作吸附、燃烧等方法净化高浓度废气的前处理,以减轻这些方法的负荷。 2.3.5 冷凝法 抛弃法:将脱硫的生成物作为固体废物抛掉(方法简单,费用低) 回收法:将SO2转变成有用的物质加以回收(成本高,所得副产品存在着应用及销路问题,但是对保护环境有利) 2.4 二氧化硫废气治理技术 2.4.1 湿法脱除SO2技术 用液体吸收剂洗涤烟气,吸收所含的SO2 氨法、钠碱法、钙碱法 2.4.2 干法脱除SO2技术 用吸附剂或催化剂脱除废气中的SO2 活性炭吸附法、催化氧化法 氨法 用氨水作吸收剂吸收废气中的SO2,由于氨易挥发,实际上此法是用氨水与SO2反应后生成的亚硫酸铵水溶液作为吸收SO2的吸收剂,主要反应如下: 2NH3+SO2+H2O=(NH4)2SO3 (NH4)2SO3+NH3=2NH4HSO3 通入氨后的再生反应: NH4HSO3+NH3=(NH4)2SO3 (对吸收后的混合液用不同方法处理可得到不同的副产物) 若用浓硫酸或浓硝酸等对吸收液进行酸解,所得到的副产物为高浓度的SO2、(NH4)2SO4或NH4NO3,该法称为氨-酸法。 若用NH3、NH4HCO3等将吸收液中的NH4HSO3全部变为 (NH4)2SO3后,经分离可副产结晶的(NH4)2SO3,此法不消耗酸,称为氨-亚铵法。 若将吸收液用NH3中和,使吸收液中的NH4HSO3全部转变为(NH4)2SO3,再用空气对(NH4)2SO3进行氧化,则可得副产品(NH4)2SO4,该法称为氨-硫铵法。 钠碱法 本法是用氢氧化钠或碳酸钠的水溶液作为开始吸收剂,与SO2反应生成的Na2SO3继续吸收SO2,主要吸收反应为: Na+SO2→NaHSO3 2NaOH+SO2 →Na2SO3+H2O Na2SO3+SO2+H2O →2NaHSO3 生成的吸收液为Na2SO3和NaHSO3的混合液。用不同方法处理吸收液,可得到不同的副产物。 将吸收液中的NaHSO3用NaOH中和,得到Na2SO3。由于Na2SO3溶解度较NaHSO3低,它则从溶液中结晶出来,经分离可得副产物Na2SO3。析出结晶后的母液作为吸收剂循环利用。该法称为亚硫酸钠法。 若将吸收液中的NaHSO3加热再生,可得到高浓度SO2作为副产物。而得到Na2SO3结晶,经分离溶解后返回吸收系统循环使用。此法称为亚硫酸钠循环法或威尔曼洛德纳法。 钠碱吸收剂吸收能力大,不易挥发,对吸收系统不存在污垢、堵塞等问题。亚硫酸钠法工艺成熟、简单、吸收率高,所得副产品纯度高,但耗碱量大,成本高,因此只适于中小气量烟气的治理。而亚硫酸钠循环法可处理大气量烟气,吸收效率可达99%以上,在国外应用最多的方法之一。 钙碱法 此法是用石灰石、生石灰或消石灰的乳浊液为吸收剂吸收烟气中SO2的方法,对吸收液进行氧化可副产石膏,通过控制吸收液的pH,可以副产半水亚硫酸钙。 该法所用吸收剂价廉易得,吸收率高,回收的产物石膏可用作建筑材料,而半水亚硫酸钙是一种钙塑材料,用途广泛,因此成为目前吸收脱硫应用最多的方法。该法存在的最主要问题是吸收系统容易结垢、堵塞;另外,由于石灰乳循环量大,使设备体积增大,操作费用增高。 活性炭吸附法 在有氧及水蒸气存在的条件下,可用活性炭吸附SO2。由于活性炭表面具有的催化作用,使吸附的SO2被烟气中的氧气氧化为SO3,SO3再和水反应吸收生成硫酸;或用加热的方法使其分解,生成浓度高的SO2,此SO2可用来制酸。 2.4.2 干法脱除SO2技术 催化氧化法 在催化剂的作用下可将SO2氧化为SO3后进行利用。 干式催化氧化法可用来处理硫酸尾气及有色金属冶炼尾气,技术成熟,已成为制酸工艺的一部分。但用此法处理电厂锅炉烟气及炼油尾气,则在技术上、经济上还存在一些问题需要解决。 氮氧化物是一类化合物的总称,分子式为NOx。它包括N2O、NO、NO2、N2O3、N2O4及N2O5等,在自然条件下主要是NO和NO2 ,它们是常见的大气污染物。 大气中的氮氧化物包括天然的和人类活动所产生的两种。 2.5 氮氧化物废气的治理 人为产生的氮氧化合物比天然产生的要少得多,但是由于其分布较为集中,与人类活动的关系较为密切,所以危害较大。 如:NO与血液中的血红蛋白的亲和力较强,可结成亚硝基血红蛋白或亚硝基高铁血红蛋白,使血液输氧能力下降,出现缺氧发绀症状;NO2对呼吸器官有强烈的刺激作用;NO2在自然环境中可形成酸,而在阳光照射下,可与磷氢化合物生成有致癌的光化学烟雾等。 吸收法: 目前常用的吸收剂有碱液、稀硝酸溶液和浓硫酸等。 常用的碱液有氢氧化钠、碳酸钠、氨水等,NOx被吸收后生成硝酸盐和亚硝酸盐等有用的副产品。碱液吸收设备简单,操作容易,投资少。 吸附法: 用吸附法吸附NOx已有工业规模的生产装置,可采用的吸附剂为活性炭与砩石分子筛。 催化还原法: 在催化剂的作用下,用还原剂将废气中的NOx还原为无害的N2和H2O的方法称为催化还原法。 依还原剂与废气中的O2发生作用与否,可将催化还原法分为两类: 非选择性催化还原和选择性催化还原。 2.5 有机废气的治理 挥发性有机物VOCs: 沸点在50~250℃的化合物,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物。 大多数有机废气都对人体有害,甚至还有致癌、致畸、致突变的作用,因此对其在空气中的含量要求非常严格。 有机废气来源于化工、石油化工、轻工等许多行业和部门,有些行业比如石油开采与加工、炼焦与煤焦油加工、有机合成、溶剂加工、感光材料、油漆涂料加工及使用等,尤其带来严重污染。 各行业中所产生的VOCs种类繁多,组成复杂,常见的组分有碳氢化合物、苯系物、醇类、酮类、酚类、醛类、酯类、胺类、腈(氰)类等。 碳氢化合物(如烷、烯、炔烃、芳香烃、多环烃); 含氧有机物(醛、酚、酮、有机酸); 含氯有机物(氯乙烯、氯甲烷、二氯乙烷、氯醇); 含硫有机物(硫醇、噻吩、二硫化碳)。 有机废气的净化 基本方法:冷凝法、吸收法、吸附法、燃烧(催化燃烧、热力燃烧或直接燃烧)、膜法、生物法等,或上述方法的组合。 选择方法:既考虑技术上的可行性,又考虑经济上的可行性。具体应从污染物的性质、浓度、净化要求并结合生产中的具体情况以及投资、运转费用、回收效益等诸方面予以考虑,同时还要综合考虑环境效益和社会效益。 冷凝法治理有机废气 处理高浓度有机废气,特别是组分单纯的气体。 作为吸附净化或燃烧的预处理,以减轻后续操作的负担。 处理含有大量水蒸气的高温气体。 冷凝法流程 吸收法治理有机废气 在大部分有机废气的治理中,不采用吸收法,其主要原因是合适的吸收剂的选择。目前只有在石油炼制、石油化工的生产及储运中,采用溶剂吸收法对烃类(如苯类、汽油、石脑油等)进行回收。 对苯类的吸收,多采用二乙二醇醚作吸收剂。对汽油等轻质油品,多采用轻柴油作吸收剂进行吸收。吸收装置多采用吸收塔。 吸附法治理有机废气 对于低浓度的有回收价值的有机废气,多采用吸附法,因为此种方法可以实现有机废气的资源化,同时,吸附法净化有机废气可以达到相当彻底的程度。例如在大量使用有机溶剂的行业如涂布、喷涂、感光材料等行业,还有一些使用有机溶剂的化工、石化行业,采用吸附的方法回收有机溶剂的量相当可观。 吸附法净化的工艺流程 催化燃烧法净化有机废气 催化燃烧是借助催化剂在低温(200~400℃)下,实现对有机物的完全氧化,因此能耗少,操作简便、安全、净化效率高,在有机废气特别是回收价值不大的有机废气净化方面应用比较广,已有不少定型设备可供选用。 高性能的氧化催化剂是催化燃烧技术的关键。一般来说,催化剂活性成分、载体类型、负载方法等国内外基本相同。 催化剂活性成份主要包括贵金属(Pd、Pt为主)、过渡金属(Cu、Mn、Cd、Ni、Co、Cr等)和稀土金属(Ce、La等)氧化物,以及复合氧化物(钙钛矿、尖晶石以及Cu-Mn-O等)。 载体主要有氧化物(Al2O3、TiO2、SiO2、CeO2、ZrO2、Fe2O3等)、沸石、蜂窝陶瓷、金属载体等。 负载方法有浸渍法、电沉积法,溶胶凝胶法、反相微乳法和沉淀法等。在催化剂活性组分含量、活性数据和寿命等方面,由于用途不同,所处理污染物的性质差别很大,因此并没有明确的界定。 目前我们所使用的氧化催化剂,包括贵金属和非贵金属催化剂,一般在250~350℃之间即可以达到有机污染物的完全转化。 预热温度过高只会增加运行成本,而对转化率的提高贡献不大。当预热温度超过400℃时,由于反应速度过快,反应温度不易控制,而且床层温度过高还可能造成催化剂烧结而失活。因此一般催化燃烧装置的废气预热温度不应高于400℃。 大量的工程实践表明,废气中粉尘的含量低于10mg/m3时不会对催化剂造成明显的影响。因此一般规定进入催化燃烧装置的废气中粉尘的含量低于10mg/m3。 卧式催化燃烧器 立式催化燃烧器 污染气体的生物处理 废气主要来源 人类生产及生活中的燃料燃烧 生产活动,例如化工、冶金、生物制品、屠宰、污水处理及垃圾处理等工厂所产生的废气。 3.除尘装置的效率 除尘装置的效率是代表装置捕集粉尘效果的重要指标,也是选择、评价装置的最主要的参数。 (1)除尘装置的总效率(除尘效率) 除尘装置的总效率是指在同一时间内,由除尘装置除下的粉尘量与进入除尘装置的粉尘量的百分比,常用符号?表示。总效率所反映的实际上是装置净化程度的平均值,它是评定装置性能的重要技术指标。 (2)除尘装置的分级效率 说明对某一粒径范围粒子的去除能力 (3)除尘装置的通过率(除尘效果) 指同一时间内从除尘器出口逸散的粉尘量与进入的粉尘量之百分比。 (4)多级除尘效率 (二)除尘装置的分类与除尘原理 1.除尘装置的分类 2.各类除尘装置的除尘原理 1.除尘装置的分类 是否使用水或其他液体可分为 湿式除尘器、干式除尘器。 按效率的高低分: 高效除尘器、中效除尘器和低效除尘器 根据除尘机制分四类: 机械式除尘器 湿式除尘器 过滤式除尘器 静电除尘器。 2.各类除尘装置的除尘原理 (1)机械式除尘器 机械式除尘器是通过质量力的作用达到除尘目的的除尘装置。质量力包括重力、惯性力和离心力,主要除尘器形式为重力沉降室,惯性除尘器和旋风除尘器等。 ①重力沉降室除尘原理 重力沉降室是利用粉尘与气体的密度不同,使含尘气体中的尘粒依靠自身的重力从气流中自然沉降下来,达到净化目的的一种装置。 重力沉降室示意图 单层重力沉降室工作原理图 多层重力沉降室 ②惯性除尘器的除尘原理 利用粉尘与气体在运动中的惯性力不同,使粉尘从气流中分离出来的方法为惯性力除尘,常用方法是使含尘气流冲击在挡扳上、气流方向发生急剧改变,气流中的尘粒惯性较大,不能随气流急剧转弯,便从气流中分离出来。 惯性除尘器除尘原理示意图 ③离心式除尘器的工作原理 使含尘气流沿某一定方向作连续的旋转运动,粒子在随气流旋转中获得离心力,使粒子从气流中分离出来的装置为离心式除尘器,也称为旋风除尘器。 机械式除尘器的特点 机械式除尘器造价比较低,维护管理方便,耐高温,耐腐蚀,适宜含湿量大的烟气,但对粒径5μm以下的尘粒去除率较低。当气体含尘浓度高时,这类除尘器可作为初级除尘,以减轻二级除尘的负荷。 重力沉降室适宜尘粒粒径较大(50μm)、要求除尘效率较低、场地足够大的情况;惯性除尘器适宜排气量较小、对除尘效 率要求较低的场合;旋风除尘器是工业中应用较为广泛的除尘设备之一,通常情况下,旋风除尘器对5μm以上的尘粒除尘效率最高可达95%左右,因此常作为二 级除尘系统中的预除尘、气力输送系统中的卸料分离器和1 ~20t/h的小型锅炉烟气的处理用。 (2)湿式除尘原理 湿式除尘也称为洗涤除尘。该方法是用液体(一般为水)洗涤含尘气体,使尘粒与液膜、液滴或气泡碰撞而被吸附,凝集变大,尘粒随液体排出,气体得到净化。 湿式除尘器的作用机理 ①惯性碰撞 ②扩散作用 ③凝聚作用 ?粘附 喷淋洗涤装置的示意图 文丘里洗涤除尘器 填料塔洗涤器 湿式除尘器的特点 结构简单,造价低,除尘效率高,在处理高温、易燃、易爆气体时安全性好,在除尘的同时还可去除气体中的有害物。湿式除尘器的不足是用水量大,易产生腐蚀性液体,产生的废液或泥浆需进行处理,并可能造成二次污染。在寒冷地区和季节,易结冰。 (3)过滤式除尘器的滤尘原理 过滤式除尘是使含尘气体通过多孔滤料,把气体中的尘粒截留下来,使气体得到净化的方法。按滤尘方式有内部过滤与外部过滤之分。 除尘式过滤器是使含尘气体通过多孔滤料,把气体 中的尘粒截留下来,使气体得到净化的方法。 按滤尘方式有内部过滤与外部过滤之分。 袋式除尘器的除尘机制 筛分作用 惯性碰撞作用 扩散作用 静电作用 重力沉降作用 机械清灰袋式除尘器 袋式除尘器的特点 袋式除尘器除尘效率高达98%,能除掉微细尘粒,对处理气量变化的适应性强,最适宜处理有回收价值的细小颗粒物。 但袋式除 尘器的投资比较高,允许使用的温度低,操作时气体的温度需高于露点温度,否则不仅会增加除尘器的阻力,甚至由于湿尘黏附在滤袋表面而使除尘器不能正常工作。 当尘粒浓度超过尘粒爆炸下限时,也不能使用袋滤式过滤器。袋式过滤器广泛应用于各种工业生产的除尘过程。 (4)静电除尘原理 是利用高压电场产生的静电力(库仑力)的作用实现固体粒子或液体粒子与气流分离的方法。含尘气体进入除尘器后,通过以下三个阶段实现尘气分离。 ①粒子荷电 ②粒子沉降③粒子清除 静电除尘是利用高压电场产生的静电力的作用,实现固体粒子或液体粒子与气流分离的方法。 常用的除尘器有管式与板式两类,由放电极与集成极组成。 管式电除尘器的示意图 平板电除尘器 单管电除尘器 电除尘器的特点 电除尘器已被广泛作为各种工业炉窑和火力发电站大型锅炉的除尘设备,能处理高温、高湿烟气。它的除尘效率高,可达98%以上,压力损失低,运行费 用较低,能满足环保要求的排放浓度;处理风量大,可达每小时数千至一二百万立方米;阻力较低,仅IOO~ 500Pa,且运行能耗低。但电除尘器的结构复杂,初投资大,占地面积大,对操作、运行、维护管理都有较高的要求。 1.除尘装置的选择原则 除尘器的整体性能主要是用三个技术指标(处理气体量、压力损失、除尘效率)和三个经济指标(一次投资、运转管理费用,占地面积及使用寿命)来衡量。 (三)除尘装置的选择 考虑因素 (1)需达到的除尘效率 (2)设备运行条件 (3)经济性 (4)占地面积及空间的大小。 (5)设备操作要求及使用寿命。 (6)其他因素 2.除尘装置的性能比较 1、吸收法 2、吸附法 3、催化转化法 4、燃烧法 5、冷凝法 2.3 气态污染物的一般处理技术 定义 采用适当的液体作为吸收剂,使含有有害物质的废气与吸收剂接触,废气中的有害物质被吸收于吸收剂中,使气体得到净化。 分类 物理吸收 和 化学吸收 在处理气量大、有害组分浓度低为特点的各种废气时,化学吸收效果比单纯的物理吸收的效果好,所以多采用化学吸收法。 特点 设备简单、捕集效率高、应用范围广、一次性投资低等。但由于 吸收是将气体中的有害物质转移到了液体中,因此对吸收液必须进行处理,否则容易引起二次污染。由于吸收温度越低效果越好,因此在处理高温烟气时,必须对排气进行降温预处理。 2.3.1 吸收法 本作品采用知识共享署名-非商业性使用 2.5 中国大陆许可协议进行许可。 专业交流 模板超市 设计服务 NordriDesign中国专业PowerPoint媒体设计与开发 本作品的提供是以适用知识共享组织的公共许可( 简称“CCPL” 或 “许可”) 条款为前提的。本作品受著作权法以及其他相关法律的保护。对本作品的使用不得超越本许可授权的范围。 如您行使本许可授予的使用本作品的权利,就表明您接受并同意遵守本许可的条款。在您接受这些条款和规定的前提下,许可人授予您本许可所包括的权利。 查看全部… 5.2废气的处理 一、 大气污染 三、无机废气处理 二、 除尘技术 四、有机废气处理 五、废气生物处理 六、恶臭处理 大气中的污染物对环境和人体产生重大的影响。八大公害事件: 1. 1930年12月1~5日比利时马斯河谷烟雾污染事件 2. 1948年10月26~31日美国宾州多诺拉大气污染事件 3. 20世纪40年代初期美国洛杉矶光化学烟雾事件 4. 1952年12月5~8日英国伦敦烟雾事件 5. 1961年日本四日哮喘事件 6. 1968年3月日本北九州市、爱知县米糠油中毒事件 7. 1953~1956年日本熊本县甲基汞中毒事件 8. 1955~1972年日本富山县神通川流域骨痛病事件(镉污染) 大气污染不仅影响周围的环境,而且对全球环境也带来影响: 1.温室效应与全球变暖 大气中二氧化碳、甲烷和氮氧化合物含量越高,热外流越受阻,从而地表温度也升得越高,称为温室效应。 温室气体排放迅速增加 在过去100年内全球平均气温升高了0.6℃,预计21世纪末全球平均气温将升高3℃,冰川融化,到2100年世界海平面将升高0.6~2米。 气温升高导致全球出现各种灾害性气候,台风、洪水、干旱等灾害频发。 2.臭氧层破坏 臭氧层存在于地球大气层上部平流层,是地球保护屏障。 人类活动排放到高空的氯氟烃如氟利昂(CFCl3)等含有大量自由氯原子能催化分解大量臭氧分子,破坏了平流层中臭氧的平衡,出现臭氧层变薄甚至产生臭氧空洞 按现行减少速度,到2075年,臭氧将比1985年减少40%,全球皮肤癌患者将达1.5亿人。臭氧空洞还在继续扩大。 3.酸雨 酸雨是指pH值小于5.6的酸性降水。 大气中的SO2和NOx在强光照射下发生光化学氧化作用,并与水汽结合而形成硫酸和硝酸导致雨水呈酸性。产生酸雨的物质主要来源于人类生产生活中矿物燃料的燃烧,尤其是煤炭和石油。 酸雨造成死亡之湖(纽约州) 酸雨毁坏的德国森林 酸雨带来一片凄凉景象 4. 环境污染 环境污染包括:大气污染、水体污染、土壤污染和噪音污染等 2001世界十大污染城市中有太原、北京、兰州、重庆、贵阳、淄博、济南、广州等8个中国城市 大气、水体、土壤三者的污染不是孤立的,它们能互相影响 我国1/3城市大气属于重污染,估计2020年仅燃煤污染导致的疾病就要支付3900亿美元的费用,约占GDP的13% 环境污染事故之一: DDT (Dichloro-diphenyl-trichloroethane) 二氯二苯三氯乙烷 造成“寂静的春天”, 唤起对环境污染的警觉。 飞机喷洒 DDT 杀蚊 DDT经 食 物 链 浓 缩 107 倍 水中 DDT浓度 3 x 10-6ppm 鹰体内DDT浓度 25ppm 大气污染的防治是一个庞大的系统工程,基本的思想是采用法律、行政、经济和工程技术相结合的措施进行综合防治。从整个区域大气污染状况出发,统一规划、合理布局,综合应用各种防治污染的措施,充分利用环境的自净能力,从而有效控制大气污染。 一、废气分类及来源 (一)废气的定义: 废气(waste gas)是指人类在生产和生活过程中排出的有毒有害的气体。排放的废气气味大,严重污染环境和影响人体健康。 一、废气分类及来源 (二)废气分类:通常我们是按大气的污染成份来分类: 1:颗粒污染物: 一般指悬浮在空气当中的固体或液体物质,通常称为微粒物或颗粒物。 2:气态污染物: 1)以S02为主的含硫化合物:如硫化氢、二氧化硫、三氧化硫、硫酸、亚硫酸盐和有机硫气溶胶等 。 2)以NO 和NO2为主的含氮化合物。 3)碳的氧化物:主要是CO和CO2,如“温室效应”。 4)碳氢化合物:统称烃类,它们是形成危害人类健康的光化学烟雾的主要成分。 5)含卤素的化合物:通常主要指氟化氢(HF) 和 氯化氢(HCL),它们可以破坏臭氧层,导致人们患皮肤病及致癌。 3:放射性污染 易燃易爆气体较多:氢、一氧化碳及酮、醛等有机可燃物,当排放量大时,就可能造成火灾、爆炸事故。 含有毒或腐蚀性气体:如二氧化硫、氮氧化合物、氯气、氯化氢及多种有机物,其中二氧化硫和氮氧化物的排放量最大。这些气体会直接损害人体健康,腐蚀设备、建筑物的表面,还会形成酸雨污染地表和水域。 浮游粒子种类多,危害大:粉尘、烟气和酸雾等。 制药废气的特点 二、废气危害 1:颗粒污染物的危害: 大气固体颗粒物包括粉尘和烟尘,粒径较小的容易进入人的呼吸系统。 2:硫化合物的危害 二氧化硫是一种无色不可燃的有毒气体,具有强烈的辛辣、刺激性气味。 值得注意的是,SO2、SO3与水气、烟尘等结合形成硫酸烟雾及硫酸盐后,造成的生态环境污染和危害远比单一的S02大得多,其毒性作用可增大3~4倍; 空气中SO2浓度和存在时间超过一定值时还会对植物造成伤害。 硫化氢是无色、具有浓厚腐蛋气

  综合医院患者服用假、劣药品、调剂错误药品导致人身损害的处置预案及流程.docx

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者